Add about page deail
Some checks failed
ci/woodpecker/push/woodpecker Pipeline failed

This commit is contained in:
Nontouch Mukleemart 2025-03-06 22:51:01 +07:00
parent 6fd22ad4da
commit 08c7a4d398

View file

@ -16,35 +16,34 @@ const AboutPage = () => {
<>
<Navbar />
<div style={containerStyle}>
<h2>About this project</h2>
<p>
Traveling Salesman Problem is blah blah blah Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua quaerat voluptatem. Ut enim aeque
doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et
infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea
variareli voluptas distinguique possit, augeri amplificarique non possit.
</p>
<p>
Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata
et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse
numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm
in nobis ut et voluptates et dolores nasci fatemur e corporis.
</p>
<p>
Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata
et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse
numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm
in nobis ut et voluptates et dolores nasci fatemur e corporis voluptatibus et doloribus --
itaque concedo, quod modo dicebas, cadere causa, si qui.
</p>
<h1>About the Traveling Salesman Problem (TSP)</h1>
<h2>What is the Traveling Salesman Problem?</h2>
<p>The Traveling Salesman Problem (TSP) is a classic optimization problem in computer science and operations research. It asks:</p>
<p><em>"Given a list of cities and the distances between them, what is the shortest possible route that visits each city exactly once and returns to the starting point?"</em></p>
<p>TSP has applications in logistics, manufacturing, and route planning. However, solving it efficiently becomes difficult as the number of cities increases.</p>
<h4>Created by</h4>
<h2>Solving TSP with Blind Search</h2>
<p>Blind search methods explore solutions without using problem-specific knowledge:</p>
<ul>
<li>64010823 รภทร นอดม</li>
<li>64010543 พงศระ วงศประสทธพร</li>
<li>64011106 ณรงคพล จรงสรรค</li>
<li>64011160 นนท กลมาศ</li>
<li><strong>Brute Force:</strong> Generates all routes and picks the shortest. It guarantees an optimal solution but has a factorial time complexity.</li>
<li><strong>Breadth-First Search (BFS):</strong> Explores routes level by level but grows exponentially in complexity.</li>
<li><strong>Depth-First Search (DFS):</strong> Traverses full paths before backtracking but may not be optimal.</li>
</ul>
<p>Blind search methods are inefficient for large-scale TSP instances.</p>
<h2>Solving TSP with Heuristic Search</h2>
<p>Heuristic search methods use problem-specific knowledge to find solutions efficiently:</p>
<ul>
<li><strong>Greedy Algorithm:</strong> Chooses the nearest unvisited city but does not guarantee the best solution.</li>
<li><strong>A* Search:</strong> Uses cost estimation to optimize the search.</li>
<li><strong>Genetic Algorithms:</strong> Uses evolution-based optimization.</li>
<li><strong>Simulated Annealing:</strong> Uses randomization to escape local optima.</li>
<li><strong>Ant Colony Optimization:</strong> Mimics how ants find paths efficiently.</li>
</ul>
<p>These methods balance accuracy and computational efficiency, making them suitable for real-world applications.</p>
<h2>Conclusion</h2>
<p>The Traveling Salesman Problem is a fundamental challenge in optimization and AI. While blind search guarantees the optimal route, its cost is too high for large problems. Heuristic search algorithms provide practical alternatives that yield near-optimal solutions efficiently.</p>
</div>
</>
);