From 08c7a4d39857e96890c3c675e2917149ae9e94fd Mon Sep 17 00:00:00 2001 From: Nontouch Mukleemart Date: Thu, 6 Mar 2025 22:51:01 +0700 Subject: [PATCH] Add about page deail --- src/pages/about.js | 51 +++++++++++++++++++++++----------------------- 1 file changed, 25 insertions(+), 26 deletions(-) diff --git a/src/pages/about.js b/src/pages/about.js index 04fe4ec..198ed43 100644 --- a/src/pages/about.js +++ b/src/pages/about.js @@ -16,35 +16,34 @@ const AboutPage = () => { <>
-

About this project

-

- Traveling Salesman Problem is blah blah blah Lorem ipsum dolor sit amet, consectetur adipiscing elit, - sed do eiusmod tempor incididunt ut labore et dolore magna aliqua quaerat voluptatem. Ut enim aeque - doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et - infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea - variareli voluptas distinguique possit, augeri amplificarique non possit. -

-

- Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata - et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse - numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm - in nobis ut et voluptates et dolores nasci fatemur e corporis. -

-

- Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata - et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse - numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm - in nobis ut et voluptates et dolores nasci fatemur e corporis voluptatibus et doloribus -- - itaque concedo, quod modo dicebas, cadere causa, si qui. -

+

About the Traveling Salesman Problem (TSP)

+

What is the Traveling Salesman Problem?

+

The Traveling Salesman Problem (TSP) is a classic optimization problem in computer science and operations research. It asks:

+

"Given a list of cities and the distances between them, what is the shortest possible route that visits each city exactly once and returns to the starting point?"

+

TSP has applications in logistics, manufacturing, and route planning. However, solving it efficiently becomes difficult as the number of cities increases.

-

Created by

+

Solving TSP with Blind Search

+

Blind search methods explore solutions without using problem-specific knowledge:

    -
  • 64010823 วีรภัทร อินอุดม
  • -
  • 64010543 พงศ์ภีระ วงศประสิทธิพร
  • -
  • 64011106 ณรงค์พล กิจรังสรรค์
  • -
  • 64011160 นนทัช มุกลีมาศ
  • +
  • Brute Force: Generates all routes and picks the shortest. It guarantees an optimal solution but has a factorial time complexity.
  • +
  • Breadth-First Search (BFS): Explores routes level by level but grows exponentially in complexity.
  • +
  • Depth-First Search (DFS): Traverses full paths before backtracking but may not be optimal.
+

Blind search methods are inefficient for large-scale TSP instances.

+ +

Solving TSP with Heuristic Search

+

Heuristic search methods use problem-specific knowledge to find solutions efficiently:

+
    +
  • Greedy Algorithm: Chooses the nearest unvisited city but does not guarantee the best solution.
  • +
  • A* Search: Uses cost estimation to optimize the search.
  • +
  • Genetic Algorithms: Uses evolution-based optimization.
  • +
  • Simulated Annealing: Uses randomization to escape local optima.
  • +
  • Ant Colony Optimization: Mimics how ants find paths efficiently.
  • +
+

These methods balance accuracy and computational efficiency, making them suitable for real-world applications.

+ +

Conclusion

+

The Traveling Salesman Problem is a fundamental challenge in optimization and AI. While blind search guarantees the optimal route, its cost is too high for large problems. Heuristic search algorithms provide practical alternatives that yield near-optimal solutions efficiently.

);