diff --git a/src/pages/about.js b/src/pages/about.js index 04fe4ec..198ed43 100644 --- a/src/pages/about.js +++ b/src/pages/about.js @@ -16,35 +16,34 @@ const AboutPage = () => { <>
-

About this project

-

- Traveling Salesman Problem is blah blah blah Lorem ipsum dolor sit amet, consectetur adipiscing elit, - sed do eiusmod tempor incididunt ut labore et dolore magna aliqua quaerat voluptatem. Ut enim aeque - doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et - infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea - variareli voluptas distinguique possit, augeri amplificarique non possit. -

-

- Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata - et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse - numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm - in nobis ut et voluptates et dolores nasci fatemur e corporis. -

-

- Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata - et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse - numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm - in nobis ut et voluptates et dolores nasci fatemur e corporis voluptatibus et doloribus -- - itaque concedo, quod modo dicebas, cadere causa, si qui. -

+

About the Traveling Salesman Problem (TSP)

+

What is the Traveling Salesman Problem?

+

The Traveling Salesman Problem (TSP) is a classic optimization problem in computer science and operations research. It asks:

+

"Given a list of cities and the distances between them, what is the shortest possible route that visits each city exactly once and returns to the starting point?"

+

TSP has applications in logistics, manufacturing, and route planning. However, solving it efficiently becomes difficult as the number of cities increases.

-

Created by

+

Solving TSP with Blind Search

+

Blind search methods explore solutions without using problem-specific knowledge:

+

Blind search methods are inefficient for large-scale TSP instances.

+ +

Solving TSP with Heuristic Search

+

Heuristic search methods use problem-specific knowledge to find solutions efficiently:

+ +

These methods balance accuracy and computational efficiency, making them suitable for real-world applications.

+ +

Conclusion

+

The Traveling Salesman Problem is a fundamental challenge in optimization and AI. While blind search guarantees the optimal route, its cost is too high for large problems. Heuristic search algorithms provide practical alternatives that yield near-optimal solutions efficiently.

);