diff --git a/src/pages/about.js b/src/pages/about.js
index 04fe4ec..198ed43 100644
--- a/src/pages/about.js
+++ b/src/pages/about.js
@@ -16,35 +16,34 @@ const AboutPage = () => {
<>
- Traveling Salesman Problem is blah blah blah Lorem ipsum dolor sit amet, consectetur adipiscing elit, - sed do eiusmod tempor incididunt ut labore et dolore magna aliqua quaerat voluptatem. Ut enim aeque - doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et - infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea - variareli voluptas distinguique possit, augeri amplificarique non possit. -
-- Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata - et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse - numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm - in nobis ut et voluptates et dolores nasci fatemur e corporis. -
-- Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata - et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse - numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm - in nobis ut et voluptates et dolores nasci fatemur e corporis voluptatibus et doloribus -- - itaque concedo, quod modo dicebas, cadere causa, si qui. -
+The Traveling Salesman Problem (TSP) is a classic optimization problem in computer science and operations research. It asks:
+"Given a list of cities and the distances between them, what is the shortest possible route that visits each city exactly once and returns to the starting point?"
+TSP has applications in logistics, manufacturing, and route planning. However, solving it efficiently becomes difficult as the number of cities increases.
-Blind search methods explore solutions without using problem-specific knowledge:
Blind search methods are inefficient for large-scale TSP instances.
+ +Heuristic search methods use problem-specific knowledge to find solutions efficiently:
+These methods balance accuracy and computational efficiency, making them suitable for real-world applications.
+ +The Traveling Salesman Problem is a fundamental challenge in optimization and AI. While blind search guarantees the optimal route, its cost is too high for large problems. Heuristic search algorithms provide practical alternatives that yield near-optimal solutions efficiently.