This commit is contained in:
parent
6fd22ad4da
commit
08c7a4d398
1 changed files with 25 additions and 26 deletions
|
@ -16,35 +16,34 @@ const AboutPage = () => {
|
||||||
<>
|
<>
|
||||||
<Navbar />
|
<Navbar />
|
||||||
<div style={containerStyle}>
|
<div style={containerStyle}>
|
||||||
<h2>About this project</h2>
|
<h1>About the Traveling Salesman Problem (TSP)</h1>
|
||||||
<p>
|
<h2>What is the Traveling Salesman Problem?</h2>
|
||||||
Traveling Salesman Problem is blah blah blah Lorem ipsum dolor sit amet, consectetur adipiscing elit,
|
<p>The Traveling Salesman Problem (TSP) is a classic optimization problem in computer science and operations research. It asks:</p>
|
||||||
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua quaerat voluptatem. Ut enim aeque
|
<p><em>"Given a list of cities and the distances between them, what is the shortest possible route that visits each city exactly once and returns to the starting point?"</em></p>
|
||||||
doleamus animo, cum corpore dolemus, fieri tamen permagna accessio potest, si aliquod aeternum et
|
<p>TSP has applications in logistics, manufacturing, and route planning. However, solving it efficiently becomes difficult as the number of cities increases.</p>
|
||||||
infinitum impendere malum nobis opinemur. Quod idem licet transferre in voluptatem, ut postea
|
|
||||||
variareli voluptas distinguique possit, augeri amplificarique non possit.
|
|
||||||
</p>
|
|
||||||
<p>
|
|
||||||
Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata
|
|
||||||
et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse
|
|
||||||
numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm
|
|
||||||
in nobis ut et voluptates et dolores nasci fatemur e corporis.
|
|
||||||
</p>
|
|
||||||
<p>
|
|
||||||
Ullus investigandi veri, nisi inveneris, et quaerendi defatigationo turpis est, cum esset accusata
|
|
||||||
et vituperata ab Hortensio. Qui liber cum et mortem contemnit, qua qui est imbutus quietus esse
|
|
||||||
numquam potest. Praeterea bona praeterita grata recordatione renovata delectant. Est autem situm
|
|
||||||
in nobis ut et voluptates et dolores nasci fatemur e corporis voluptatibus et doloribus --
|
|
||||||
itaque concedo, quod modo dicebas, cadere causa, si qui.
|
|
||||||
</p>
|
|
||||||
|
|
||||||
<h4>Created by</h4>
|
<h2>Solving TSP with Blind Search</h2>
|
||||||
|
<p>Blind search methods explore solutions without using problem-specific knowledge:</p>
|
||||||
<ul>
|
<ul>
|
||||||
<li>64010823 วีรภัทร อินอุดม</li>
|
<li><strong>Brute Force:</strong> Generates all routes and picks the shortest. It guarantees an optimal solution but has a factorial time complexity.</li>
|
||||||
<li>64010543 พงศ์ภีระ วงศประสิทธิพร</li>
|
<li><strong>Breadth-First Search (BFS):</strong> Explores routes level by level but grows exponentially in complexity.</li>
|
||||||
<li>64011106 ณรงค์พล กิจรังสรรค์</li>
|
<li><strong>Depth-First Search (DFS):</strong> Traverses full paths before backtracking but may not be optimal.</li>
|
||||||
<li>64011160 นนทัช มุกลีมาศ</li>
|
|
||||||
</ul>
|
</ul>
|
||||||
|
<p>Blind search methods are inefficient for large-scale TSP instances.</p>
|
||||||
|
|
||||||
|
<h2>Solving TSP with Heuristic Search</h2>
|
||||||
|
<p>Heuristic search methods use problem-specific knowledge to find solutions efficiently:</p>
|
||||||
|
<ul>
|
||||||
|
<li><strong>Greedy Algorithm:</strong> Chooses the nearest unvisited city but does not guarantee the best solution.</li>
|
||||||
|
<li><strong>A* Search:</strong> Uses cost estimation to optimize the search.</li>
|
||||||
|
<li><strong>Genetic Algorithms:</strong> Uses evolution-based optimization.</li>
|
||||||
|
<li><strong>Simulated Annealing:</strong> Uses randomization to escape local optima.</li>
|
||||||
|
<li><strong>Ant Colony Optimization:</strong> Mimics how ants find paths efficiently.</li>
|
||||||
|
</ul>
|
||||||
|
<p>These methods balance accuracy and computational efficiency, making them suitable for real-world applications.</p>
|
||||||
|
|
||||||
|
<h2>Conclusion</h2>
|
||||||
|
<p>The Traveling Salesman Problem is a fundamental challenge in optimization and AI. While blind search guarantees the optimal route, its cost is too high for large problems. Heuristic search algorithms provide practical alternatives that yield near-optimal solutions efficiently.</p>
|
||||||
</div>
|
</div>
|
||||||
</>
|
</>
|
||||||
);
|
);
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue