Add support for the Adiantum encryption mode. Adiantum was designed by
Paul Crowley and is specified by our paper:
Adiantum: length-preserving encryption for entry-level processors
(https://eprint.iacr.org/2018/720.pdf)
See our paper for full details; this patch only provides an overview.
Adiantum is a tweakable, length-preserving encryption mode designed for
fast and secure disk encryption, especially on CPUs without dedicated
crypto instructions. Adiantum encrypts each sector using the XChaCha12
stream cipher, two passes of an ε-almost-∆-universal (εA∆U) hash
function, and an invocation of the AES-256 block cipher on a single
16-byte block. On CPUs without AES instructions, Adiantum is much
faster than AES-XTS; for example, on ARM Cortex-A7, on 4096-byte sectors
Adiantum encryption is about 4 times faster than AES-256-XTS encryption,
and decryption about 5 times faster.
Adiantum is a specialization of the more general HBSH construction. Our
earlier proposal, HPolyC, was also a HBSH specialization, but it used a
different εA∆U hash function, one based on Poly1305 only. Adiantum's
εA∆U hash function, which is based primarily on the "NH" hash function
like that used in UMAC (RFC4418), is about twice as fast as HPolyC's;
consequently, Adiantum is about 20% faster than HPolyC.
This speed comes with no loss of security: Adiantum is provably just as
secure as HPolyC, in fact slightly *more* secure. Like HPolyC,
Adiantum's security is reducible to that of XChaCha12 and AES-256,
subject to a security bound. XChaCha12 itself has a security reduction
to ChaCha12. Therefore, one need not "trust" Adiantum; one need only
trust ChaCha12 and AES-256. Note that the εA∆U hash function is only
used for its proven combinatorical properties so cannot be "broken".
Adiantum is also a true wide-block encryption mode, so flipping any
plaintext bit in the sector scrambles the entire ciphertext, and vice
versa. No other such mode is available in the kernel currently; doing
the same with XTS scrambles only 16 bytes. Adiantum also supports
arbitrary-length tweaks and naturally supports any length input >= 16
bytes without needing "ciphertext stealing".
For the stream cipher, Adiantum uses XChaCha12 rather than XChaCha20 in
order to make encryption feasible on the widest range of devices.
Although the 20-round variant is quite popular, the best known attacks
on ChaCha are on only 7 rounds, so ChaCha12 still has a substantial
security margin; in fact, larger than AES-256's. 12-round Salsa20 is
also the eSTREAM recommendation. For the block cipher, Adiantum uses
AES-256, despite it having a lower security margin than XChaCha12 and
needing table lookups, due to AES's extensive adoption and analysis
making it the obvious first choice. Nevertheless, for flexibility this
patch also permits the "adiantum" template to be instantiated with
XChaCha20 and/or with an alternate block cipher.
We need Adiantum support in the kernel for use in dm-crypt and fscrypt,
where currently the only other suitable options are block cipher modes
such as AES-XTS. A big problem with this is that many low-end mobile
devices (e.g. Android Go phones sold primarily in developing countries,
as well as some smartwatches) still have CPUs that lack AES
instructions, e.g. ARM Cortex-A7. Sadly, AES-XTS encryption is much too
slow to be viable on these devices. We did find that some "lightweight"
block ciphers are fast enough, but these suffer from problems such as
not having much cryptanalysis or being too controversial.
The ChaCha stream cipher has excellent performance but is insecure to
use directly for disk encryption, since each sector's IV is reused each
time it is overwritten. Even restricting the threat model to offline
attacks only isn't enough, since modern flash storage devices don't
guarantee that "overwrites" are really overwrites, due to wear-leveling.
Adiantum avoids this problem by constructing a
"tweakable super-pseudorandom permutation"; this is the strongest
possible security model for length-preserving encryption.
Of course, storing random nonces along with the ciphertext would be the
ideal solution. But doing that with existing hardware and filesystems
runs into major practical problems; in most cases it would require data
journaling (like dm-integrity) which severely degrades performance.
Thus, for now length-preserving encryption is still needed.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 059c2a4d8e164dccc3078e49e7f286023b019a98
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
crypto/tcrypt.c
crypto/testmgr.c
(adjusted test vector formatting for old testmgr)
Bug: 112008522
Test: Among other things, I ran the relevant crypto self-tests:
1.) Build kernel with CONFIG_CRYPTO_MANAGER_DISABLE_TESTS *unset*, and
all relevant crypto algorithms built-in, including:
CONFIG_CRYPTO_ADIANTUM=y
CONFIG_CRYPTO_CHACHA20=y
CONFIG_CRYPTO_CHACHA20_NEON=y
CONFIG_CRYPTO_NHPOLY1305=y
CONFIG_CRYPTO_NHPOLY1305_NEON=y
CONFIG_CRYPTO_POLY1305=y
CONFIG_CRYPTO_AES=y
CONFIG_CRYPTO_AES_ARM=y
2.) Boot and check dmesg for test failures.
3.) Instantiate "adiantum(xchacha12,aes)" and
"adiantum(xchacha20,aes)" to trigger them to be tested. There are
many ways to do this, but one way is to create a dm-crypt target
that uses them, e.g.
key=$(hexdump -n 32 -e '16/4 "%08X" 1 "\n"' /dev/urandom)
dmsetup create crypt --table "0 $((1<<17)) crypt xchacha12,aes-adiantum-plain64 $key 0 /dev/vdc 0"
dmsetup remove crypt
dmsetup create crypt --table "0 $((1<<17)) crypt xchacha20,aes-adiantum-plain64 $key 0 /dev/vdc 0"
dmsetup remove crypt
4.) Check dmesg for test failures again.
5.) Do 1-4 on both x86_64 (for basic testing) and on arm32 (for
testing the ARM32-specific implementations). I did the arm32 kernel
testing on Raspberry Pi 2, which is a BCM2836-based device that can
run the upstream and Android common kernels.
The same ARM32 assembly files for ChaCha, NHPoly1305, and AES are
also included in the userspace Adiantum benchmark suite at
https://github.com/google/adiantum, where they have undergone
additional correctness testing.
Change-Id: Ic61c13b53facfd2173065be715a7ee5f3af8760b
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a generic implementation of NHPoly1305, an ε-almost-∆-universal hash
function used in the Adiantum encryption mode.
CONFIG_NHPOLY1305 is not selectable by itself since there won't be any
real reason to enable it without also enabling Adiantum support.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 26609a21a9460145e37d90947ad957b358a05288
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
crypto/testmgr.c
crypto/testmgr.h
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: If6f00c01fab530fc2458c44ca111f84604cb85c1
Signed-off-by: Eric Biggers <ebiggers@google.com>
Now that the generic implementation of ChaCha20 has been refactored to
allow varying the number of rounds, add support for XChaCha12, which is
the XSalsa construction applied to ChaCha12. ChaCha12 is one of the
three ciphers specified by the original ChaCha paper
(https://cr.yp.to/chacha/chacha-20080128.pdf: "ChaCha, a variant of
Salsa20"), alongside ChaCha8 and ChaCha20. ChaCha12 is faster than
ChaCha20 but has a lower, but still large, security margin.
We need XChaCha12 support so that it can be used in the Adiantum
encryption mode, which enables disk/file encryption on low-end mobile
devices where AES-XTS is too slow as the CPUs lack AES instructions.
We'd prefer XChaCha20 (the more popular variant), but it's too slow on
some of our target devices, so at least in some cases we do need the
XChaCha12-based version. In more detail, the problem is that Adiantum
is still much slower than we're happy with, and encryption still has a
quite noticeable effect on the feel of low-end devices. Users and
vendors push back hard against encryption that degrades the user
experience, which always risks encryption being disabled entirely. So
we need to choose the fastest option that gives us a solid margin of
security, and here that's XChaCha12. The best known attack on ChaCha
breaks only 7 rounds and has 2^235 time complexity, so ChaCha12's
security margin is still better than AES-256's. Much has been learned
about cryptanalysis of ARX ciphers since Salsa20 was originally designed
in 2005, and it now seems we can be comfortable with a smaller number of
rounds. The eSTREAM project also suggests the 12-round version of
Salsa20 as providing the best balance among the different variants:
combining very good performance with a "comfortable margin of security".
Note that it would be trivial to add vanilla ChaCha12 in addition to
XChaCha12. However, it's unneeded for now and therefore is omitted.
As discussed in the patch that introduced XChaCha20 support, I
considered splitting the code into separate chacha-common, chacha20,
xchacha20, and xchacha12 modules, so that these algorithms could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit aa7624093cb7fbf4fea95e612580d8d29a819f67
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
crypto/chacha_generic.c
(backported from skcipher to blkcipher API)
(adjusted test vector formatting for old testmgr)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I876a5be92e9f583effcd35a4b66a36608ac581f0
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit de61d7ae5d3789dcba3749a418f76613fbee8414
https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
Conflicts:
crypto/chacha20_generic.c
include/crypto/chacha20.h
(backported from skcipher to blkcipher API)
(adjusted test vector formatting for old testmgr)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I5c878e1d6577abda11d7b737cbb650baf16b6886
Signed-off-by: Eric Biggers <ebiggers@google.com>
Commit 7e4c7f17cde2 ("crypto: testmgr - avoid overlap in chunked tests")
attempted to address a problem in the crypto testmgr code where chunked
test cases are copied to memory in a way that results in overlap.
However, the fix recreated the exact same issue for other chunked tests,
by putting IDX3 within 492 bytes of IDX1, which causes overlap if the
first chunk exceeds 492 bytes, which is the case for at least one of
the xts(aes) test cases.
So increase IDX3 by another 1000 bytes.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 04b46fbdea5e31ffd745a34fa61269a69ba9f47a)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: If698e9e3c6ba40fc2e59c86e7a54acbe4c6a5278
Signed-off-by: Eric Biggers <ebiggers@google.com>
The IDXn offsets are chosen such that tap values (which may go up to
255) end up overlapping in the xbuf allocation. In particular, IDX1
and IDX3 are too close together, so update IDX3 to avoid this issue.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 7e4c7f17cde280079db731636175b1732be7188c)
Bug: 112008522
Test: As series, see Ic61c13b53facfd2173065be715a7ee5f3af8760b
Change-Id: I1f18451e44358fafad6fba4df873a672586747c7
Signed-off-by: Eric Biggers <ebiggers@google.com>
Adds zstd support to crypto and scompress. Only supports the default
level.
Previously we held off on this patch, since there weren't any users.
Now zram is ready for zstd support, but depends on CONFIG_CRYPTO_ZSTD,
which isn't defined until this patch is in. I also see a patch adding
zstd to pstore [0], which depends on crypto zstd.
[0] lkml.kernel.org/r/9c9416b2dff19f05fb4c35879aaa83d11ff72c92.1521626182.git.geliangtang@gmail.com
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit d28fc3dbe1918333730d62aa5f0d84b6fb4e7254)
Signed-off-by: Peter Kalauskas <peskal@google.com>
Bug: 112488418
Change-Id: If8e03c1bcd2b1d66cab9230e40c7a6c2c9ecb057
Add test vectors for Speck64-XTS, generated in userspace using C code.
The inputs were borrowed from the AES-XTS test vectors, with key lengths
adjusted.
xts-speck64-neon passes these tests. However, they aren't currently
applicable for the generic XTS template, as that only supports a 128-bit
block size.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit 41b3316e75ee5e8aec7234c9d631582b13a38c7d
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
(removed 'const' from test vectors)
(replaced use of __VECS macro in crypto/testmgr.c)
Change-Id: I61a2c77dbfcf487d77b3d9ef0a823dadea8ddf07
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add test vectors for Speck128-XTS, generated in userspace using C code.
The inputs were borrowed from the AES-XTS test vectors.
Both xts(speck128-generic) and xts-speck128-neon pass these tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit c3bb521bb6ac3023ae236a3a361f951f8d78ecc4
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
(removed 'const' from test vectors)
(replaced use of __VECS macro in crypto/testmgr.c)
Change-Id: Ifd701d5df4a6602c207cfb28decc620ef7e5f896
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a generic implementation of Speck, including the Speck128 and
Speck64 variants. Speck is a lightweight block cipher that can be much
faster than AES on processors that don't have AES instructions.
We are planning to offer Speck-XTS (probably Speck128/256-XTS) as an
option for dm-crypt and fscrypt on Android, for low-end mobile devices
with older CPUs such as ARMv7 which don't have the Cryptography
Extensions. Currently, such devices are unencrypted because AES is not
fast enough, even when the NEON bit-sliced implementation of AES is
used. Other AES alternatives such as Twofish, Threefish, Camellia,
CAST6, and Serpent aren't fast enough either; it seems that only a
modern ARX cipher can provide sufficient performance on these devices.
This is a replacement for our original proposal
(https://patchwork.kernel.org/patch/10101451/) which was to offer
ChaCha20 for these devices. However, the use of a stream cipher for
disk/file encryption with no space to store nonces would have been much
more insecure than we thought initially, given that it would be used on
top of flash storage as well as potentially on top of F2FS, neither of
which is guaranteed to overwrite data in-place.
Speck has been somewhat controversial due to its origin. Nevertheless,
it has a straightforward design (it's an ARX cipher), and it appears to
be the leading software-optimized lightweight block cipher currently,
with the most cryptanalysis. It's also easy to implement without side
channels, unlike AES. Moreover, we only intend Speck to be used when
the status quo is no encryption, due to AES not being fast enough.
We've also considered a novel length-preserving encryption mode based on
ChaCha20 and Poly1305. While theoretically attractive, such a mode
would be a brand new crypto construction and would be more complicated
and difficult to implement efficiently in comparison to Speck-XTS.
There is confusion about the byte and word orders of Speck, since the
original paper doesn't specify them. But we have implemented it using
the orders the authors recommended in a correspondence with them. The
test vectors are taken from the original paper but were mapped to byte
arrays using the recommended byte and word orders.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
(cherry picked from commit da7a0ab5b4babbe5d7a46f852582be06a00a28f0
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6.git master)
(removed 'const' from test vectors)
(replaced use of __VECS macro in crypto/testmgr.c)
Change-Id: Id13c44dee8e3817590950c178d54b24c3aee0b4e
Signed-off-by: Eric Biggers <ebiggers@google.com>
Add a guard to 'state' buffer and warn if its consistency after
call to crypto_ahash_export() changes, so that any write that
goes beyond advertised statesize (and thus causing potential
memory corruption [1]) is more visible.
[1] https://marc.info/?l=linux-crypto-vger&m=147467656516085
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Marcelo Cerri <marcelo.cerri@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In FIPS mode, additional restrictions may apply. If these restrictions
are violated, the kernel will panic(). This patch allows test vectors
for symmetric ciphers to be marked as to be skipped in FIPS mode.
Together with the patch, the XTS test vectors where the AES key is
identical to the tweak key is disabled in FIPS mode. This test vector
violates the FIPS requirement that both keys must be different.
Reported-by: Tapas Sarangi <TSarangi@trustwave.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
"if (!ret == template[i].fail)" is confusing to compilers (gcc5):
crypto/testmgr.c: In function '__test_aead':
crypto/testmgr.c:531:12: warning: logical not is only applied to the
left hand side of comparison [-Wlogical-not-parentheses]
if (!ret == template[i].fail) {
^
Let there be 'if (template[i].fail == !ret) '.
Signed-off-by: Yanjiang Jin <yanjiang.jin@windriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When an akcipher test fails, we don't know which algorithm failed
because the name is not printed. This patch fixes this.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Report correct error in case of failure
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds HMAC-SHA3 test modes in tcrypt module
and related test vectors.
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch allows RSA implementations to produce output with
leading zeroes. testmgr will skip leading zeroes when comparing
the output.
This patch also tries to make the RSA test function generic enough
to potentially handle other akcipher algorithms.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement ECDH under kpp API
* Provide ECC software support for curve P-192 and
P-256.
* Add kpp test for ECDH with data generated by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Implement MPI based Diffie-Hellman under kpp API
* Test provided uses data generad by OpenSSL
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Added support for SHA-3 algorithm test's
in tcrypt module and related test vectors.
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto update from Herbert Xu:
"API:
- Crypto self tests can now be disabled at boot/run time.
- Add async support to algif_aead.
Algorithms:
- A large number of fixes to MPI from Nicolai Stange.
- Performance improvement for HMAC DRBG.
Drivers:
- Use generic crypto engine in omap-des.
- Merge ppc4xx-rng and crypto4xx drivers.
- Fix lockups in sun4i-ss driver by disabling IRQs.
- Add DMA engine support to ccp.
- Reenable talitos hash algorithms.
- Add support for Hisilicon SoC RNG.
- Add basic crypto driver for the MXC SCC.
Others:
- Do not allocate crypto hash tfm in NORECLAIM context in ecryptfs"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (77 commits)
crypto: qat - change the adf_ctl_stop_devices to void
crypto: caam - fix caam_jr_alloc() ret code
crypto: vmx - comply with ABIs that specify vrsave as reserved.
crypto: testmgr - Add a flag allowing the self-tests to be disabled at runtime.
crypto: ccp - constify ccp_actions structure
crypto: marvell/cesa - Use dma_pool_zalloc
crypto: qat - make adf_vf_isr.c dependant on IOV config
crypto: qat - Fix typo in comments
lib: asn1_decoder - add MODULE_LICENSE("GPL")
crypto: omap-sham - Use dma_request_chan() for requesting DMA channel
crypto: omap-des - Use dma_request_chan() for requesting DMA channel
crypto: omap-aes - Use dma_request_chan() for requesting DMA channel
crypto: omap-des - Integrate with the crypto engine framework
crypto: s5p-sss - fix incorrect usage of scatterlists api
crypto: s5p-sss - Fix missed interrupts when working with 8 kB blocks
crypto: s5p-sss - Use common BIT macro
crypto: mxc-scc - fix unwinding in mxc_scc_crypto_register()
crypto: mxc-scc - signedness bugs in mxc_scc_ablkcipher_req_init()
crypto: talitos - fix ahash algorithms registration
crypto: ccp - Ensure all dependencies are specified
...
As akcipher uses an SG interface, you must not use vmalloc memory
as input for it. This patch fixes testmgr to copy the vmalloc
test vectors to kmalloc memory before running the test.
This patch also removes a superfluous sg_virt call in do_test_rsa.
Cc: <stable@vger.kernel.org>
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Running self-tests for a short-lived KVM VM takes 28ms on my laptop.
This commit adds a flag 'cryptomgr.notests' which allows them to be
disabled.
However if fips=1 as well, we ignore this flag as FIPS mode mandates
that the self-tests are run.
Signed-off-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
RFC 3686 CTR in various authenc methods.
rfc3686(ctr(aes)) is already marked fips compliant,
so these should be fine.
Signed-off-by: Marcus Meissner <meissner@suse.de>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Some more authenc() wrapped algorithms are FIPS compliant, tag
them as such.
Signed-off-by: Marcus Meissner <meissner@suse.de>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
__test_aead() reads MAX_IVLEN bytes from template[i].iv, but the
actual length of the initialisation vector can be shorter.
The length of the IV is already calculated earlier in the
function. Let's just reuses that. Also the IV length is currently
calculated several time for no reason. Let's fix that too.
This fix an out-of-bound error detected by KASan.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Modify __test_hash() so that hash import/export can be tested
from within the kernel. The test is unconditionally done when
a struct hash_testvec has its .np > 1.
v3: make the test unconditional
v2: Leverage template[i].np as suggested by Tim Chen
Signed-off-by: Rui Wang <rui.y.wang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As per update of the FIPS 140-2 Annex C supported by SP800-131A, the
ANSI X9.31 DRNG is not an allowed cipher in FIPS mode any more.
CC: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The testmanager code for symmetric ciphers is extended to allow
verification of the IV after a cipher operation.
In addition, test vectors for kw(aes) for encryption and decryption are
added.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The crypto drivers are supposed to update the IV passed to the crypto
request before calling the completion callback.
Test for the IV value before considering the test as successful.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Setkey function has been split into set_priv_key and set_pub_key.
Akcipher requests takes sgl for src and dst instead of void *.
Users of the API i.e. two existing RSA implementation and
test mgr code have been updated accordingly.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
No authenc() ciphers are FIPS approved, nor is ecb(des).
After the end of 2015, ansi_cprng will also be non-approved.
Signed-off-by: John Haxby <john.haxby@oracle.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
While the destination buffer 'iv' is MAX_IVLEN size,
the source 'template[i].iv' could be smaller, thus
memcpy may read read invalid memory.
Use crypto_skcipher_ivsize() to get real ivsize
and pass it to memcpy.
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
CMAC is an approved cipher in FIPS 140-2. The patch allows the use
of CMAC with TDES and AES in FIPS mode.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the authenc tests while the conversion to the
new IV calling convention takes place. It also replaces the authenc
test vectors with ones that will work with the new IV convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the rfc4309 test while the conversion to the
new seqiv calling convention takes place. It also replaces the
rfc4309 test vectors with ones that will work with the new IV
convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>