exynos-linux-stable/arch/x86/include/asm/kaiser.h

142 lines
4.3 KiB
C
Raw Normal View History

KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
#ifndef _ASM_X86_KAISER_H
#define _ASM_X86_KAISER_H
#include <uapi/asm/processor-flags.h> /* For PCID constants */
/*
* This file includes the definitions for the KAISER feature.
* KAISER is a counter measure against x86_64 side channel attacks on
* the kernel virtual memory. It has a shadow pgd for every process: the
* shadow pgd has a minimalistic kernel-set mapped, but includes the whole
* user memory. Within a kernel context switch, or when an interrupt is handled,
* the pgd is switched to the normal one. When the system switches to user mode,
* the shadow pgd is enabled. By this, the virtual memory caches are freed,
* and the user may not attack the whole kernel memory.
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
*
* A minimalistic kernel mapping holds the parts needed to be mapped in user
* mode, such as the entry/exit functions of the user space, or the stacks.
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
*/
#define KAISER_SHADOW_PGD_OFFSET 0x1000
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
#ifdef __ASSEMBLY__
#ifdef CONFIG_PAGE_TABLE_ISOLATION
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
.macro _SWITCH_TO_KERNEL_CR3 reg
movq %cr3, \reg
andq $(~(X86_CR3_PCID_ASID_MASK | KAISER_SHADOW_PGD_OFFSET)), \reg
/* If PCID enabled, set X86_CR3_PCID_NOFLUSH_BIT */
ALTERNATIVE "", "bts $63, \reg", X86_FEATURE_PCID
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
movq \reg, %cr3
.endm
.macro _SWITCH_TO_USER_CR3 reg regb
/*
* regb must be the low byte portion of reg: because we have arranged
* for the low byte of the user PCID to serve as the high byte of NOFLUSH
* (0x80 for each when PCID is enabled, or 0x00 when PCID and NOFLUSH are
* not enabled): so that the one register can update both memory and cr3.
*/
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
movq %cr3, \reg
orq PER_CPU_VAR(x86_cr3_pcid_user), \reg
kaiser: load_new_mm_cr3() let SWITCH_USER_CR3 flush user We have many machines (Westmere, Sandybridge, Ivybridge) supporting PCID but not INVPCID: on these load_new_mm_cr3() simply crashed. Flushing user context inside load_new_mm_cr3() without the use of invpcid is difficult: momentarily switch from kernel to user context and back to do so? I'm not sure whether that can be safely done at all, and would risk polluting user context with kernel internals, and kernel context with stale user externals. Instead, follow the hint in the comment that was there: change X86_CR3_PCID_USER_VAR to be a per-cpu variable, then load_new_mm_cr3() can leave a note in it, for SWITCH_USER_CR3 on return to userspace to flush user context TLB, instead of default X86_CR3_PCID_USER_NOFLUSH. Which works well enough that there's no need to do it this way only when invpcid is unsupported: it's a good alternative to invpcid here. But there's a couple of inlines in asm/tlbflush.h that need to do the same trick, so it's best to localize all this per-cpu business in mm/kaiser.c: moving that part of the initialization from setup_pcid() to kaiser_setup_pcid(); with kaiser_flush_tlb_on_return_to_user() the function for noting an X86_CR3_PCID_USER_FLUSH. And let's keep a KAISER_SHADOW_PGD_OFFSET in there, to avoid the extra OR on exit. I did try to make the feature tests in asm/tlbflush.h more consistent with each other: there seem to be far too many ways of performing such tests, and I don't have a good grasp of their differences. At first I converted them all to be static_cpu_has(): but that proved to be a mistake, as the comment in __native_flush_tlb_single() hints; so then I reversed and made them all this_cpu_has(). Probably all gratuitous change, but that's the way it's working at present. I am slightly bothered by the way non-per-cpu X86_CR3_PCID_KERN_VAR gets re-initialized by each cpu (before and after these changes): no problem when (as usual) all cpus on a machine have the same features, but in principle incorrect. However, my experiment to per-cpu-ify that one did not end well... Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-17 15:00:37 -07:00
js 9f
/* If PCID enabled, FLUSH this time, reset to NOFLUSH for next time */
movb \regb, PER_CPU_VAR(x86_cr3_pcid_user+7)
kaiser: load_new_mm_cr3() let SWITCH_USER_CR3 flush user We have many machines (Westmere, Sandybridge, Ivybridge) supporting PCID but not INVPCID: on these load_new_mm_cr3() simply crashed. Flushing user context inside load_new_mm_cr3() without the use of invpcid is difficult: momentarily switch from kernel to user context and back to do so? I'm not sure whether that can be safely done at all, and would risk polluting user context with kernel internals, and kernel context with stale user externals. Instead, follow the hint in the comment that was there: change X86_CR3_PCID_USER_VAR to be a per-cpu variable, then load_new_mm_cr3() can leave a note in it, for SWITCH_USER_CR3 on return to userspace to flush user context TLB, instead of default X86_CR3_PCID_USER_NOFLUSH. Which works well enough that there's no need to do it this way only when invpcid is unsupported: it's a good alternative to invpcid here. But there's a couple of inlines in asm/tlbflush.h that need to do the same trick, so it's best to localize all this per-cpu business in mm/kaiser.c: moving that part of the initialization from setup_pcid() to kaiser_setup_pcid(); with kaiser_flush_tlb_on_return_to_user() the function for noting an X86_CR3_PCID_USER_FLUSH. And let's keep a KAISER_SHADOW_PGD_OFFSET in there, to avoid the extra OR on exit. I did try to make the feature tests in asm/tlbflush.h more consistent with each other: there seem to be far too many ways of performing such tests, and I don't have a good grasp of their differences. At first I converted them all to be static_cpu_has(): but that proved to be a mistake, as the comment in __native_flush_tlb_single() hints; so then I reversed and made them all this_cpu_has(). Probably all gratuitous change, but that's the way it's working at present. I am slightly bothered by the way non-per-cpu X86_CR3_PCID_KERN_VAR gets re-initialized by each cpu (before and after these changes): no problem when (as usual) all cpus on a machine have the same features, but in principle incorrect. However, my experiment to per-cpu-ify that one did not end well... Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-17 15:00:37 -07:00
9:
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
movq \reg, %cr3
.endm
.macro SWITCH_KERNEL_CR3
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
ALTERNATIVE "jmp 8f", "pushq %rax", X86_FEATURE_KAISER
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
_SWITCH_TO_KERNEL_CR3 %rax
popq %rax
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
8:
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
.endm
.macro SWITCH_USER_CR3
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
ALTERNATIVE "jmp 8f", "pushq %rax", X86_FEATURE_KAISER
_SWITCH_TO_USER_CR3 %rax %al
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
popq %rax
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
8:
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
.endm
.macro SWITCH_KERNEL_CR3_NO_STACK
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
ALTERNATIVE "jmp 8f", \
__stringify(movq %rax, PER_CPU_VAR(unsafe_stack_register_backup)), \
X86_FEATURE_KAISER
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
_SWITCH_TO_KERNEL_CR3 %rax
movq PER_CPU_VAR(unsafe_stack_register_backup), %rax
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
8:
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
.endm
#else /* CONFIG_PAGE_TABLE_ISOLATION */
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
.macro SWITCH_KERNEL_CR3
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
.endm
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
.macro SWITCH_USER_CR3
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
.endm
.macro SWITCH_KERNEL_CR3_NO_STACK
.endm
#endif /* CONFIG_PAGE_TABLE_ISOLATION */
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
#else /* __ASSEMBLY__ */
#ifdef CONFIG_PAGE_TABLE_ISOLATION
/*
* Upon kernel/user mode switch, it may happen that the address
* space has to be switched before the registers have been
* stored. To change the address space, another register is
* needed. A register therefore has to be stored/restored.
*/
DECLARE_PER_CPU_USER_MAPPED(unsigned long, unsafe_stack_register_backup);
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
DECLARE_PER_CPU(unsigned long, x86_cr3_pcid_user);
kaiser: load_new_mm_cr3() let SWITCH_USER_CR3 flush user We have many machines (Westmere, Sandybridge, Ivybridge) supporting PCID but not INVPCID: on these load_new_mm_cr3() simply crashed. Flushing user context inside load_new_mm_cr3() without the use of invpcid is difficult: momentarily switch from kernel to user context and back to do so? I'm not sure whether that can be safely done at all, and would risk polluting user context with kernel internals, and kernel context with stale user externals. Instead, follow the hint in the comment that was there: change X86_CR3_PCID_USER_VAR to be a per-cpu variable, then load_new_mm_cr3() can leave a note in it, for SWITCH_USER_CR3 on return to userspace to flush user context TLB, instead of default X86_CR3_PCID_USER_NOFLUSH. Which works well enough that there's no need to do it this way only when invpcid is unsupported: it's a good alternative to invpcid here. But there's a couple of inlines in asm/tlbflush.h that need to do the same trick, so it's best to localize all this per-cpu business in mm/kaiser.c: moving that part of the initialization from setup_pcid() to kaiser_setup_pcid(); with kaiser_flush_tlb_on_return_to_user() the function for noting an X86_CR3_PCID_USER_FLUSH. And let's keep a KAISER_SHADOW_PGD_OFFSET in there, to avoid the extra OR on exit. I did try to make the feature tests in asm/tlbflush.h more consistent with each other: there seem to be far too many ways of performing such tests, and I don't have a good grasp of their differences. At first I converted them all to be static_cpu_has(): but that proved to be a mistake, as the comment in __native_flush_tlb_single() hints; so then I reversed and made them all this_cpu_has(). Probably all gratuitous change, but that's the way it's working at present. I am slightly bothered by the way non-per-cpu X86_CR3_PCID_KERN_VAR gets re-initialized by each cpu (before and after these changes): no problem when (as usual) all cpus on a machine have the same features, but in principle incorrect. However, my experiment to per-cpu-ify that one did not end well... Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-17 15:00:37 -07:00
extern char __per_cpu_user_mapped_start[], __per_cpu_user_mapped_end[];
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
extern int kaiser_enabled;
extern void __init kaiser_check_boottime_disable(void);
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
#else
#define kaiser_enabled 0
static inline void __init kaiser_check_boottime_disable(void) {}
#endif /* CONFIG_PAGE_TABLE_ISOLATION */
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
/*
* Kaiser function prototypes are needed even when CONFIG_PAGE_TABLE_ISOLATION is not set,
kaiser: add "nokaiser" boot option, using ALTERNATIVE Added "nokaiser" boot option: an early param like "noinvpcid". Most places now check int kaiser_enabled (#defined 0 when not CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S and entry_64_compat.S are using the ALTERNATIVE technique, which patches in the preferred instructions at runtime. That technique is tied to x86 cpu features, so X86_FEATURE_KAISER is fabricated. Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that, but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when nokaiser like when !CONFIG_KAISER, but not setting either when kaiser - neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL won't get set in some obscure corner, or something add PGE into CR4. By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled, all page table setup which uses pte_pfn() masks it out of the ptes. It's slightly shameful that the same declaration versus definition of kaiser_enabled appears in not one, not two, but in three header files (asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way, than with #including any of those in any of the others; and did not feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes them all, so we shall hear about it if they get out of synch. Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER from kaiser.c; removed the unused native_get_normal_pgd(); removed the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some comments. But more interestingly, set CR4.PSE in secondary_startup_64: the manual is clear that it does not matter whether it's 0 or 1 when 4-level-pts are enabled, but I was distracted to find cr4 different on BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-24 16:59:49 -07:00
* so as to build with tests on kaiser_enabled instead of #ifdefs.
*/
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
/**
* kaiser_add_mapping - map a virtual memory part to the shadow (user) mapping
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
* @addr: the start address of the range
* @size: the size of the range
* @flags: The mapping flags of the pages
*
* The mapping is done on a global scope, so no bigger
* synchronization has to be done. the pages have to be
* manually unmapped again when they are not needed any longer.
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
*/
extern int kaiser_add_mapping(unsigned long addr, unsigned long size, unsigned long flags);
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
/**
* kaiser_remove_mapping - unmap a virtual memory part of the shadow mapping
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
* @addr: the start address of the range
* @size: the size of the range
*/
extern void kaiser_remove_mapping(unsigned long start, unsigned long size);
/**
* kaiser_init - Initialize the shadow mapping
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
*
* Most parts of the shadow mapping can be mapped upon boot
* time. Only per-process things like the thread stacks
* or a new LDT have to be mapped at runtime. These boot-
* time mappings are permanent and never unmapped.
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
*/
extern void kaiser_init(void);
#endif /* __ASSEMBLY */
KAISER: Kernel Address Isolation This patch introduces our implementation of KAISER (Kernel Address Isolation to have Side-channels Efficiently Removed), a kernel isolation technique to close hardware side channels on kernel address information. More information about the patch can be found on: https://github.com/IAIK/KAISER From: Richard Fellner <richard.fellner@student.tugraz.at> From: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode Date: Thu, 4 May 2017 14:26:50 +0200 Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2 Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5 To: <linux-kernel@vger.kernel.org> To: <kernel-hardening@lists.openwall.com> Cc: <clementine.maurice@iaik.tugraz.at> Cc: <moritz.lipp@iaik.tugraz.at> Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Cc: Richard Fellner <richard.fellner@student.tugraz.at> Cc: Ingo Molnar <mingo@kernel.org> Cc: <kirill.shutemov@linux.intel.com> Cc: <anders.fogh@gdata-adan.de> After several recent works [1,2,3] KASLR on x86_64 was basically considered dead by many researchers. We have been working on an efficient but effective fix for this problem and found that not mapping the kernel space when running in user mode is the solution to this problem [4] (the corresponding paper [5] will be presented at ESSoS17). With this RFC patch we allow anybody to configure their kernel with the flag CONFIG_KAISER to add our defense mechanism. If there are any questions we would love to answer them. We also appreciate any comments! Cheers, Daniel (+ the KAISER team from Graz University of Technology) [1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf [2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf [3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf [4] https://github.com/IAIK/KAISER [5] https://gruss.cc/files/kaiser.pdf [patch based also on https://raw.githubusercontent.com/IAIK/KAISER/master/KAISER/0001-KAISER-Kernel-Address-Isolation.patch] Signed-off-by: Richard Fellner <richard.fellner@student.tugraz.at> Signed-off-by: Moritz Lipp <moritz.lipp@iaik.tugraz.at> Signed-off-by: Daniel Gruss <daniel.gruss@iaik.tugraz.at> Signed-off-by: Michael Schwarz <michael.schwarz@iaik.tugraz.at> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-04 14:26:50 +02:00
#endif /* _ASM_X86_KAISER_H */