exynos-linux-stable/include/linux/bpf-cgroup.h

190 lines
6.3 KiB
C
Raw Normal View History

#ifndef _BPF_CGROUP_H
#define _BPF_CGROUP_H
#include <linux/jump_label.h>
#include <uapi/linux/bpf.h>
struct sock;
BACKPORT: bpf: Hooks for sys_bind == The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Change-Id: I47b4cd565cb7cd3bcf3ecf80ddf2586ee81868fb Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:02 -07:00
struct sockaddr;
struct cgroup;
struct sk_buff;
bpf: BPF support for sock_ops Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding struct that allows BPF programs of this type to access some of the socket's fields (such as IP addresses, ports, etc.). It uses the existing bpf cgroups infrastructure so the programs can be attached per cgroup with full inheritance support. The program will be called at appropriate times to set relevant connections parameters such as buffer sizes, SYN and SYN-ACK RTOs, etc., based on connection information such as IP addresses, port numbers, etc. Alghough there are already 3 mechanisms to set parameters (sysctls, route metrics and setsockopts), this new mechanism provides some distinct advantages. Unlike sysctls, it can set parameters per connection. In contrast to route metrics, it can also use port numbers and information provided by a user level program. In addition, it could set parameters probabilistically for evaluation purposes (i.e. do something different on 10% of the flows and compare results with the other 90% of the flows). Also, in cases where IPv6 addresses contain geographic information, the rules to make changes based on the distance (or RTT) between the hosts are much easier than route metric rules and can be global. Finally, unlike setsockopt, it oes not require application changes and it can be updated easily at any time. Although the bpf cgroup framework already contains a sock related program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type (BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called only once during the connections's lifetime. In contrast, the new program type will be called multiple times from different places in the network stack code. For example, before sending SYN and SYN-ACKs to set an appropriate timeout, when the connection is established to set congestion control, etc. As a result it has "op" field to specify the type of operation requested. The purpose of this new program type is to simplify setting connection parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is easy to use facebook's internal IPv6 addresses to determine if both hosts of a connection are in the same datacenter. Therefore, it is easy to write a BPF program to choose a small SYN RTO value when both hosts are in the same datacenter. This patch only contains the framework to support the new BPF program type, following patches add the functionality to set various connection parameters. This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS and a new bpf syscall command to load a new program of this type: BPF_PROG_LOAD_SOCKET_OPS. Two new corresponding structs (one for the kernel one for the user/BPF program): /* kernel version */ struct bpf_sock_ops_kern { struct sock *sk; __u32 op; union { __u32 reply; __u32 replylong[4]; }; }; /* user version * Some fields are in network byte order reflecting the sock struct * Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to * convert them to host byte order. */ struct bpf_sock_ops { __u32 op; union { __u32 reply; __u32 replylong[4]; }; __u32 family; __u32 remote_ip4; /* In network byte order */ __u32 local_ip4; /* In network byte order */ __u32 remote_ip6[4]; /* In network byte order */ __u32 local_ip6[4]; /* In network byte order */ __u32 remote_port; /* In network byte order */ __u32 local_port; /* In host byte horder */ }; Currently there are two types of ops. The first type expects the BPF program to return a value which is then used by the caller (or a negative value to indicate the operation is not supported). The second type expects state changes to be done by the BPF program, for example through a setsockopt BPF helper function, and they ignore the return value. The reply fields of the bpf_sockt_ops struct are there in case a bpf program needs to return a value larger than an integer. [Nguyễn Long: Update to match "UPSTREAM: bpf: multi program support for cgroup+bpf"] Change-Id: Ifbbde466367bc68333cc08f57601550944f264ec Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-30 20:02:40 -07:00
struct bpf_sock_ops_kern;
#ifdef CONFIG_CGROUP_BPF
extern struct static_key_false cgroup_bpf_enabled_key;
#define cgroup_bpf_enabled static_branch_unlikely(&cgroup_bpf_enabled_key)
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
struct bpf_prog_list {
struct list_head node;
struct bpf_prog *prog;
};
struct bpf_prog_array;
struct cgroup_bpf {
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
/* array of effective progs in this cgroup */
struct bpf_prog_array __rcu *effective[MAX_BPF_ATTACH_TYPE];
/* attached progs to this cgroup and attach flags
* when flags == 0 or BPF_F_ALLOW_OVERRIDE the progs list will
* have either zero or one element
* when BPF_F_ALLOW_MULTI the list can have up to BPF_CGROUP_MAX_PROGS
*/
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
struct list_head progs[MAX_BPF_ATTACH_TYPE];
u32 flags[MAX_BPF_ATTACH_TYPE];
/* temp storage for effective prog array used by prog_attach/detach */
struct bpf_prog_array __rcu *inactive;
};
void cgroup_bpf_put(struct cgroup *cgrp);
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
int cgroup_bpf_inherit(struct cgroup *cgrp);
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
enum bpf_attach_type type, u32 flags);
int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
enum bpf_attach_type type, u32 flags);
int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
union bpf_attr __user *uattr);
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
/* Wrapper for __cgroup_bpf_*() protected by cgroup_mutex */
int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
enum bpf_attach_type type, u32 flags);
int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
enum bpf_attach_type type, u32 flags);
int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
union bpf_attr __user *uattr);
int __cgroup_bpf_run_filter_skb(struct sock *sk,
struct sk_buff *skb,
enum bpf_attach_type type);
int __cgroup_bpf_run_filter_sk(struct sock *sk,
enum bpf_attach_type type);
BACKPORT: bpf: Hooks for sys_bind == The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Change-Id: I47b4cd565cb7cd3bcf3ecf80ddf2586ee81868fb Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:02 -07:00
int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
struct sockaddr *uaddr,
enum bpf_attach_type type);
bpf: BPF support for sock_ops Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding struct that allows BPF programs of this type to access some of the socket's fields (such as IP addresses, ports, etc.). It uses the existing bpf cgroups infrastructure so the programs can be attached per cgroup with full inheritance support. The program will be called at appropriate times to set relevant connections parameters such as buffer sizes, SYN and SYN-ACK RTOs, etc., based on connection information such as IP addresses, port numbers, etc. Alghough there are already 3 mechanisms to set parameters (sysctls, route metrics and setsockopts), this new mechanism provides some distinct advantages. Unlike sysctls, it can set parameters per connection. In contrast to route metrics, it can also use port numbers and information provided by a user level program. In addition, it could set parameters probabilistically for evaluation purposes (i.e. do something different on 10% of the flows and compare results with the other 90% of the flows). Also, in cases where IPv6 addresses contain geographic information, the rules to make changes based on the distance (or RTT) between the hosts are much easier than route metric rules and can be global. Finally, unlike setsockopt, it oes not require application changes and it can be updated easily at any time. Although the bpf cgroup framework already contains a sock related program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type (BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called only once during the connections's lifetime. In contrast, the new program type will be called multiple times from different places in the network stack code. For example, before sending SYN and SYN-ACKs to set an appropriate timeout, when the connection is established to set congestion control, etc. As a result it has "op" field to specify the type of operation requested. The purpose of this new program type is to simplify setting connection parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is easy to use facebook's internal IPv6 addresses to determine if both hosts of a connection are in the same datacenter. Therefore, it is easy to write a BPF program to choose a small SYN RTO value when both hosts are in the same datacenter. This patch only contains the framework to support the new BPF program type, following patches add the functionality to set various connection parameters. This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS and a new bpf syscall command to load a new program of this type: BPF_PROG_LOAD_SOCKET_OPS. Two new corresponding structs (one for the kernel one for the user/BPF program): /* kernel version */ struct bpf_sock_ops_kern { struct sock *sk; __u32 op; union { __u32 reply; __u32 replylong[4]; }; }; /* user version * Some fields are in network byte order reflecting the sock struct * Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to * convert them to host byte order. */ struct bpf_sock_ops { __u32 op; union { __u32 reply; __u32 replylong[4]; }; __u32 family; __u32 remote_ip4; /* In network byte order */ __u32 local_ip4; /* In network byte order */ __u32 remote_ip6[4]; /* In network byte order */ __u32 local_ip6[4]; /* In network byte order */ __u32 remote_port; /* In network byte order */ __u32 local_port; /* In host byte horder */ }; Currently there are two types of ops. The first type expects the BPF program to return a value which is then used by the caller (or a negative value to indicate the operation is not supported). The second type expects state changes to be done by the BPF program, for example through a setsockopt BPF helper function, and they ignore the return value. The reply fields of the bpf_sockt_ops struct are there in case a bpf program needs to return a value larger than an integer. [Nguyễn Long: Update to match "UPSTREAM: bpf: multi program support for cgroup+bpf"] Change-Id: Ifbbde466367bc68333cc08f57601550944f264ec Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-30 20:02:40 -07:00
int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
struct bpf_sock_ops_kern *sock_ops,
enum bpf_attach_type type);
/* Wrappers for __cgroup_bpf_run_filter_skb() guarded by cgroup_bpf_enabled. */
#define BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb) \
({ \
int __ret = 0; \
if (cgroup_bpf_enabled) \
__ret = __cgroup_bpf_run_filter_skb(sk, skb, \
BPF_CGROUP_INET_INGRESS); \
\
__ret; \
})
#define BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb) \
({ \
int __ret = 0; \
if (cgroup_bpf_enabled && sk && sk == skb->sk) { \
typeof(sk) __sk = sk_to_full_sk(sk); \
if (sk_fullsock(__sk)) \
__ret = __cgroup_bpf_run_filter_skb(__sk, skb, \
BPF_CGROUP_INET_EGRESS); \
} \
__ret; \
})
BACKPORT: bpf: Post-hooks for sys_bind "Post-hooks" are hooks that are called right before returning from sys_bind. At this time IP and port are already allocated and no further changes to `struct sock` can happen before returning from sys_bind but BPF program has a chance to inspect the socket and change sys_bind result. Specifically it can e.g. inspect what port was allocated and if it doesn't satisfy some policy, BPF program can force sys_bind to fail and return EPERM to user. Another example of usage is recording the IP:port pair to some map to use it in later calls to sys_connect. E.g. if some TCP server inside cgroup was bound to some IP:port_n, it can be recorded to a map. And later when some TCP client inside same cgroup is trying to connect to 127.0.0.1:port_n, BPF hook for sys_connect can override the destination and connect application to IP:port_n instead of 127.0.0.1:port_n. That helps forcing all applications inside a cgroup to use desired IP and not break those applications if they e.g. use localhost to communicate between each other. == Implementation details == Post-hooks are implemented as two new attach types `BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`. Separate attach types for IPv4 and IPv6 are introduced to avoid access to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from `inet6_bind()` since those fields might not make sense in such cases. Change-Id: Ibef21eed069c37684321b2401e5bb52f689ab8e7 Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:07 -07:00
#define BPF_CGROUP_RUN_SK_PROG(sk, type) \
({ \
int __ret = 0; \
if (cgroup_bpf_enabled && sk) { \
BACKPORT: bpf: Post-hooks for sys_bind "Post-hooks" are hooks that are called right before returning from sys_bind. At this time IP and port are already allocated and no further changes to `struct sock` can happen before returning from sys_bind but BPF program has a chance to inspect the socket and change sys_bind result. Specifically it can e.g. inspect what port was allocated and if it doesn't satisfy some policy, BPF program can force sys_bind to fail and return EPERM to user. Another example of usage is recording the IP:port pair to some map to use it in later calls to sys_connect. E.g. if some TCP server inside cgroup was bound to some IP:port_n, it can be recorded to a map. And later when some TCP client inside same cgroup is trying to connect to 127.0.0.1:port_n, BPF hook for sys_connect can override the destination and connect application to IP:port_n instead of 127.0.0.1:port_n. That helps forcing all applications inside a cgroup to use desired IP and not break those applications if they e.g. use localhost to communicate between each other. == Implementation details == Post-hooks are implemented as two new attach types `BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`. Separate attach types for IPv4 and IPv6 are introduced to avoid access to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from `inet6_bind()` since those fields might not make sense in such cases. Change-Id: Ibef21eed069c37684321b2401e5bb52f689ab8e7 Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:07 -07:00
__ret = __cgroup_bpf_run_filter_sk(sk, type); \
} \
__ret; \
})
BACKPORT: bpf: Post-hooks for sys_bind "Post-hooks" are hooks that are called right before returning from sys_bind. At this time IP and port are already allocated and no further changes to `struct sock` can happen before returning from sys_bind but BPF program has a chance to inspect the socket and change sys_bind result. Specifically it can e.g. inspect what port was allocated and if it doesn't satisfy some policy, BPF program can force sys_bind to fail and return EPERM to user. Another example of usage is recording the IP:port pair to some map to use it in later calls to sys_connect. E.g. if some TCP server inside cgroup was bound to some IP:port_n, it can be recorded to a map. And later when some TCP client inside same cgroup is trying to connect to 127.0.0.1:port_n, BPF hook for sys_connect can override the destination and connect application to IP:port_n instead of 127.0.0.1:port_n. That helps forcing all applications inside a cgroup to use desired IP and not break those applications if they e.g. use localhost to communicate between each other. == Implementation details == Post-hooks are implemented as two new attach types `BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`. Separate attach types for IPv4 and IPv6 are introduced to avoid access to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from `inet6_bind()` since those fields might not make sense in such cases. Change-Id: Ibef21eed069c37684321b2401e5bb52f689ab8e7 Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:07 -07:00
#define BPF_CGROUP_RUN_PROG_INET_SOCK(sk) \
BPF_CGROUP_RUN_SK_PROG(sk, BPF_CGROUP_INET_SOCK_CREATE)
#define BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk) \
BPF_CGROUP_RUN_SK_PROG(sk, BPF_CGROUP_INET4_POST_BIND)
#define BPF_CGROUP_RUN_PROG_INET6_POST_BIND(sk) \
BPF_CGROUP_RUN_SK_PROG(sk, BPF_CGROUP_INET6_POST_BIND)
BACKPORT: bpf: Hooks for sys_bind == The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Change-Id: I47b4cd565cb7cd3bcf3ecf80ddf2586ee81868fb Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:02 -07:00
#define BPF_CGROUP_RUN_SA_PROG(sk, uaddr, type) \
({ \
int __ret = 0; \
if (cgroup_bpf_enabled) \
__ret = __cgroup_bpf_run_filter_sock_addr(sk, uaddr, type); \
__ret; \
})
BACKPORT: bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Change-Id: I03eb513369c630b203466621d1fbdb9b29c8333c Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:05 -07:00
#define BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, type) \
({ \
int __ret = 0; \
if (cgroup_bpf_enabled) { \
lock_sock(sk); \
__ret = __cgroup_bpf_run_filter_sock_addr(sk, uaddr, type); \
release_sock(sk); \
} \
__ret; \
})
BACKPORT: bpf: Hooks for sys_bind == The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Change-Id: I47b4cd565cb7cd3bcf3ecf80ddf2586ee81868fb Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:02 -07:00
#define BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr) \
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET4_BIND)
#define BPF_CGROUP_RUN_PROG_INET6_BIND(sk, uaddr) \
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET6_BIND)
BACKPORT: bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Change-Id: I03eb513369c630b203466621d1fbdb9b29c8333c Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:05 -07:00
#define BPF_CGROUP_PRE_CONNECT_ENABLED(sk) (cgroup_bpf_enabled && \
sk->sk_prot->pre_connect)
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr) \
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET4_CONNECT)
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT(sk, uaddr) \
BPF_CGROUP_RUN_SA_PROG(sk, uaddr, BPF_CGROUP_INET6_CONNECT)
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr) \
BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, BPF_CGROUP_INET4_CONNECT)
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk, uaddr) \
BPF_CGROUP_RUN_SA_PROG_LOCK(sk, uaddr, BPF_CGROUP_INET6_CONNECT)
bpf: BPF support for sock_ops Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding struct that allows BPF programs of this type to access some of the socket's fields (such as IP addresses, ports, etc.). It uses the existing bpf cgroups infrastructure so the programs can be attached per cgroup with full inheritance support. The program will be called at appropriate times to set relevant connections parameters such as buffer sizes, SYN and SYN-ACK RTOs, etc., based on connection information such as IP addresses, port numbers, etc. Alghough there are already 3 mechanisms to set parameters (sysctls, route metrics and setsockopts), this new mechanism provides some distinct advantages. Unlike sysctls, it can set parameters per connection. In contrast to route metrics, it can also use port numbers and information provided by a user level program. In addition, it could set parameters probabilistically for evaluation purposes (i.e. do something different on 10% of the flows and compare results with the other 90% of the flows). Also, in cases where IPv6 addresses contain geographic information, the rules to make changes based on the distance (or RTT) between the hosts are much easier than route metric rules and can be global. Finally, unlike setsockopt, it oes not require application changes and it can be updated easily at any time. Although the bpf cgroup framework already contains a sock related program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type (BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called only once during the connections's lifetime. In contrast, the new program type will be called multiple times from different places in the network stack code. For example, before sending SYN and SYN-ACKs to set an appropriate timeout, when the connection is established to set congestion control, etc. As a result it has "op" field to specify the type of operation requested. The purpose of this new program type is to simplify setting connection parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is easy to use facebook's internal IPv6 addresses to determine if both hosts of a connection are in the same datacenter. Therefore, it is easy to write a BPF program to choose a small SYN RTO value when both hosts are in the same datacenter. This patch only contains the framework to support the new BPF program type, following patches add the functionality to set various connection parameters. This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS and a new bpf syscall command to load a new program of this type: BPF_PROG_LOAD_SOCKET_OPS. Two new corresponding structs (one for the kernel one for the user/BPF program): /* kernel version */ struct bpf_sock_ops_kern { struct sock *sk; __u32 op; union { __u32 reply; __u32 replylong[4]; }; }; /* user version * Some fields are in network byte order reflecting the sock struct * Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to * convert them to host byte order. */ struct bpf_sock_ops { __u32 op; union { __u32 reply; __u32 replylong[4]; }; __u32 family; __u32 remote_ip4; /* In network byte order */ __u32 local_ip4; /* In network byte order */ __u32 remote_ip6[4]; /* In network byte order */ __u32 local_ip6[4]; /* In network byte order */ __u32 remote_port; /* In network byte order */ __u32 local_port; /* In host byte horder */ }; Currently there are two types of ops. The first type expects the BPF program to return a value which is then used by the caller (or a negative value to indicate the operation is not supported). The second type expects state changes to be done by the BPF program, for example through a setsockopt BPF helper function, and they ignore the return value. The reply fields of the bpf_sockt_ops struct are there in case a bpf program needs to return a value larger than an integer. [Nguyễn Long: Update to match "UPSTREAM: bpf: multi program support for cgroup+bpf"] Change-Id: Ifbbde466367bc68333cc08f57601550944f264ec Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-30 20:02:40 -07:00
#define BPF_CGROUP_RUN_PROG_SOCK_OPS(sock_ops) \
({ \
int __ret = 0; \
if (cgroup_bpf_enabled && (sock_ops)->sk) { \
typeof(sk) __sk = sk_to_full_sk((sock_ops)->sk); \
if (sk_fullsock(__sk)) \
__ret = __cgroup_bpf_run_filter_sock_ops(__sk, \
sock_ops, \
BPF_CGROUP_SOCK_OPS); \
} \
__ret; \
})
#else
struct cgroup_bpf {};
static inline void cgroup_bpf_put(struct cgroup *cgrp) {}
UPSTREAM: bpf: multi program support for cgroup+bpf introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple bpf programs to a cgroup. The difference between three possible flags for BPF_PROG_ATTACH command: - NONE(default): No further bpf programs allowed in the subtree. - BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, the program in this cgroup yields to sub-cgroup program. - BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, that cgroup program gets run in addition to the program in this cgroup. NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't change their behavior. It only clarifies the semantics in relation to new flag. Only one program is allowed to be attached to a cgroup with NONE or BPF_F_ALLOW_OVERRIDE flag. Multiple programs are allowed to be attached to a cgroup with BPF_F_ALLOW_MULTI flag. They are executed in FIFO order (those that were attached first, run first) The programs of sub-cgroup are executed first, then programs of this cgroup and then programs of parent cgroup. All eligible programs are executed regardless of return code from earlier programs. To allow efficient execution of multiple programs attached to a cgroup and to avoid penalizing cgroups without any programs attached introduce 'struct bpf_prog_array' which is RCU protected array of pointers to bpf programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> for cgroup bits Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 324bda9e6c5add86ba2e1066476481c48132aca0) Signed-off-by: Connor O'Brien <connoro@google.com> Bug: 121213201 Bug: 138317270 Test: build & boot cuttlefish Change-Id: If17b11a773f73d45ea565a947fc1bf7e158db98d
2017-10-02 22:50:21 -07:00
static inline int cgroup_bpf_inherit(struct cgroup *cgrp) { return 0; }
BACKPORT: bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Change-Id: I03eb513369c630b203466621d1fbdb9b29c8333c Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:05 -07:00
#define BPF_CGROUP_PRE_CONNECT_ENABLED(sk) (0)
#define BPF_CGROUP_RUN_PROG_INET_INGRESS(sk,skb) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET_EGRESS(sk,skb) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET_SOCK(sk) ({ 0; })
BACKPORT: bpf: Hooks for sys_bind == The problem == There is a use-case when all processes inside a cgroup should use one single IP address on a host that has multiple IP configured. Those processes should use the IP for both ingress and egress, for TCP and UDP traffic. So TCP/UDP servers should be bound to that IP to accept incoming connections on it, and TCP/UDP clients should make outgoing connections from that IP. It should not require changing application code since it's often not possible. Currently it's solved by intercepting glibc wrappers around syscalls such as `bind(2)` and `connect(2)`. It's done by a shared library that is preloaded for every process in a cgroup so that whenever TCP/UDP server calls `bind(2)`, the library replaces IP in sockaddr before passing arguments to syscall. When application calls `connect(2)` the library transparently binds the local end of connection to that IP (`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty). Shared library approach is fragile though, e.g.: * some applications clear env vars (incl. `LD_PRELOAD`); * `/etc/ld.so.preload` doesn't help since some applications are linked with option `-z nodefaultlib`; * other applications don't use glibc and there is nothing to intercept. == The solution == The patch provides much more reliable in-kernel solution for the 1st part of the problem: binding TCP/UDP servers on desired IP. It does not depend on application environment and implementation details (whether glibc is used or not). It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND` (similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`). The new program type is intended to be used with sockets (`struct sock`) in a cgroup and provided by user `struct sockaddr`. Pointers to both of them are parts of the context passed to programs of newly added types. The new attach types provides hooks in `bind(2)` system call for both IPv4 and IPv6 so that one can write a program to override IP addresses and ports user program tries to bind to and apply such a program for whole cgroup. == Implementation notes == [1] Separate attach types for `AF_INET` and `AF_INET6` are added intentionally to prevent reading/writing to offsets that don't make sense for corresponding socket family. E.g. if user passes `sockaddr_in` it doesn't make sense to read from / write to `user_ip6[]` context fields. [2] The write access to `struct bpf_sock_addr_kern` is implemented using special field as an additional "register". There are just two registers in `sock_addr_convert_ctx_access`: `src` with value to write and `dst` with pointer to context that can't be changed not to break later instructions. But the fields, allowed to write to, are not available directly and to access them address of corresponding pointer has to be loaded first. To get additional register the 1st not used by `src` and `dst` one is taken, its content is saved to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load address of pointer field, and finally the register's content is restored from the temporary field after writing `src` value. Change-Id: I47b4cd565cb7cd3bcf3ecf80ddf2586ee81868fb Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:02 -07:00
#define BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET6_BIND(sk, uaddr) ({ 0; })
BACKPORT: bpf: Post-hooks for sys_bind "Post-hooks" are hooks that are called right before returning from sys_bind. At this time IP and port are already allocated and no further changes to `struct sock` can happen before returning from sys_bind but BPF program has a chance to inspect the socket and change sys_bind result. Specifically it can e.g. inspect what port was allocated and if it doesn't satisfy some policy, BPF program can force sys_bind to fail and return EPERM to user. Another example of usage is recording the IP:port pair to some map to use it in later calls to sys_connect. E.g. if some TCP server inside cgroup was bound to some IP:port_n, it can be recorded to a map. And later when some TCP client inside same cgroup is trying to connect to 127.0.0.1:port_n, BPF hook for sys_connect can override the destination and connect application to IP:port_n instead of 127.0.0.1:port_n. That helps forcing all applications inside a cgroup to use desired IP and not break those applications if they e.g. use localhost to communicate between each other. == Implementation details == Post-hooks are implemented as two new attach types `BPF_CGROUP_INET4_POST_BIND` and `BPF_CGROUP_INET6_POST_BIND` for existing prog type `BPF_PROG_TYPE_CGROUP_SOCK`. Separate attach types for IPv4 and IPv6 are introduced to avoid access to IPv6 field in `struct sock` from `inet_bind()` and to IPv4 field from `inet6_bind()` since those fields might not make sense in such cases. Change-Id: Ibef21eed069c37684321b2401e5bb52f689ab8e7 Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:07 -07:00
#define BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET6_POST_BIND(sk) ({ 0; })
BACKPORT: bpf: Hooks for sys_connect == The problem == See description of the problem in the initial patch of this patch set. == The solution == The patch provides much more reliable in-kernel solution for the 2nd part of the problem: making outgoing connecttion from desired IP. It adds new attach types `BPF_CGROUP_INET4_CONNECT` and `BPF_CGROUP_INET6_CONNECT` for program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` that can be used to override both source and destination of a connection at connect(2) time. Local end of connection can be bound to desired IP using newly introduced BPF-helper `bpf_bind()`. It allows to bind to only IP though, and doesn't support binding to port, i.e. leverages `IP_BIND_ADDRESS_NO_PORT` socket option. There are two reasons for this: * looking for a free port is expensive and can affect performance significantly; * there is no use-case for port. As for remote end (`struct sockaddr *` passed by user), both parts of it can be overridden, remote IP and remote port. It's useful if an application inside cgroup wants to connect to another application inside same cgroup or to itself, but knows nothing about IP assigned to the cgroup. Support is added for IPv4 and IPv6, for TCP and UDP. IPv4 and IPv6 have separate attach types for same reason as sys_bind hooks, i.e. to prevent reading from / writing to e.g. user_ip6 fields when user passes sockaddr_in since it'd be out-of-bound. == Implementation notes == The patch introduces new field in `struct proto`: `pre_connect` that is a pointer to a function with same signature as `connect` but is called before it. The reason is in some cases BPF hooks should be called way before control is passed to `sk->sk_prot->connect`. Specifically `inet_dgram_connect` autobinds socket before calling `sk->sk_prot->connect` and there is no way to call `bpf_bind()` from hooks from e.g. `ip4_datagram_connect` or `ip6_datagram_connect` since it'd cause double-bind. On the other hand `proto.pre_connect` provides a flexible way to add BPF hooks for connect only for necessary `proto` and call them at desired time before `connect`. Since `bpf_bind()` is allowed to bind only to IP and autobind in `inet_dgram_connect` binds only port there is no chance of double-bind. bpf_bind() sets `force_bind_address_no_port` to bind to only IP despite of value of `bind_address_no_port` socket field. bpf_bind() sets `with_lock` to `false` when calling to __inet_bind() and __inet6_bind() since all call-sites, where bpf_bind() is called, already hold socket lock. Change-Id: I03eb513369c630b203466621d1fbdb9b29c8333c Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-30 15:08:05 -07:00
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT(sk, uaddr) ({ 0; })
#define BPF_CGROUP_RUN_PROG_INET6_CONNECT_LOCK(sk, uaddr) ({ 0; })
bpf: BPF support for sock_ops Created a new BPF program type, BPF_PROG_TYPE_SOCK_OPS, and a corresponding struct that allows BPF programs of this type to access some of the socket's fields (such as IP addresses, ports, etc.). It uses the existing bpf cgroups infrastructure so the programs can be attached per cgroup with full inheritance support. The program will be called at appropriate times to set relevant connections parameters such as buffer sizes, SYN and SYN-ACK RTOs, etc., based on connection information such as IP addresses, port numbers, etc. Alghough there are already 3 mechanisms to set parameters (sysctls, route metrics and setsockopts), this new mechanism provides some distinct advantages. Unlike sysctls, it can set parameters per connection. In contrast to route metrics, it can also use port numbers and information provided by a user level program. In addition, it could set parameters probabilistically for evaluation purposes (i.e. do something different on 10% of the flows and compare results with the other 90% of the flows). Also, in cases where IPv6 addresses contain geographic information, the rules to make changes based on the distance (or RTT) between the hosts are much easier than route metric rules and can be global. Finally, unlike setsockopt, it oes not require application changes and it can be updated easily at any time. Although the bpf cgroup framework already contains a sock related program type (BPF_PROG_TYPE_CGROUP_SOCK), I created the new type (BPF_PROG_TYPE_SOCK_OPS) beccause the existing type expects to be called only once during the connections's lifetime. In contrast, the new program type will be called multiple times from different places in the network stack code. For example, before sending SYN and SYN-ACKs to set an appropriate timeout, when the connection is established to set congestion control, etc. As a result it has "op" field to specify the type of operation requested. The purpose of this new program type is to simplify setting connection parameters, such as buffer sizes, TCP's SYN RTO, etc. For example, it is easy to use facebook's internal IPv6 addresses to determine if both hosts of a connection are in the same datacenter. Therefore, it is easy to write a BPF program to choose a small SYN RTO value when both hosts are in the same datacenter. This patch only contains the framework to support the new BPF program type, following patches add the functionality to set various connection parameters. This patch defines a new BPF program type: BPF_PROG_TYPE_SOCKET_OPS and a new bpf syscall command to load a new program of this type: BPF_PROG_LOAD_SOCKET_OPS. Two new corresponding structs (one for the kernel one for the user/BPF program): /* kernel version */ struct bpf_sock_ops_kern { struct sock *sk; __u32 op; union { __u32 reply; __u32 replylong[4]; }; }; /* user version * Some fields are in network byte order reflecting the sock struct * Use the bpf_ntohl helper macro in samples/bpf/bpf_endian.h to * convert them to host byte order. */ struct bpf_sock_ops { __u32 op; union { __u32 reply; __u32 replylong[4]; }; __u32 family; __u32 remote_ip4; /* In network byte order */ __u32 local_ip4; /* In network byte order */ __u32 remote_ip6[4]; /* In network byte order */ __u32 local_ip6[4]; /* In network byte order */ __u32 remote_port; /* In network byte order */ __u32 local_port; /* In host byte horder */ }; Currently there are two types of ops. The first type expects the BPF program to return a value which is then used by the caller (or a negative value to indicate the operation is not supported). The second type expects state changes to be done by the BPF program, for example through a setsockopt BPF helper function, and they ignore the return value. The reply fields of the bpf_sockt_ops struct are there in case a bpf program needs to return a value larger than an integer. [Nguyễn Long: Update to match "UPSTREAM: bpf: multi program support for cgroup+bpf"] Change-Id: Ifbbde466367bc68333cc08f57601550944f264ec Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-30 20:02:40 -07:00
#define BPF_CGROUP_RUN_PROG_SOCK_OPS(sock_ops) ({ 0; })
#endif /* CONFIG_CGROUP_BPF */
#endif /* _BPF_CGROUP_H */