
Infrastructure
Internship

Pongpeera Wongprasitthiporn’s presentation
Computer Engineering, KMITL.

May-Jun 2024 @ i-bitz company limited

Table of contents
 An overview of things I learned at i-bitz!

Coding, but less painful

Python scripting

Go programming
A lot of improvements

01

02

Kubernetes
From K3s to Helm charts

Honorable mentions
Supporting side projects

03

04

Python Scripting
01

Coding, but less painful

The problem

Create a Python program to set up Docker Engine and initialize a MongoDB
replica set while…

● Getting system memory size

● Allow setting number of containers

● Getting % of system memory allowed

Python results overview

A single-file Python script that...

● Users can set parameters on the top of the file

● Uses subprocess to install dependencies and the Docker engine

● Gets amount of system memory via psutil

● Runs specified amount of MongoDB containers

● Uses MongoClient from pymongo to initialize a replica set

Mongo Replica Initializer (Python)
on my self-hosted Forgejo instance

https://forge.techtransthai.org/latenightdef/mongo-replica-initializer/src/branch/main/python-reference.py

Go programming
02

A lot of improvements

The problem

Create a Python program to set up Docker Engine and initialize a MongoDB
replica set while…

● Getting system memory size

● Allow setting number of containers

● Getting % of system memory allowed

But this time in Go.

Rewrite It In Rust Go

● Go is a new language, at least for me.

● The Python prototype was already there. I just need a Go equivalent.

● I couldn’t get the Go Docker Client to work on the first days.

● I’m going to support more server-oriented Linux distributions. This
means more testing is required.

● Need to use ?directConnection=true which wasn’t ideal for production.

Anyways, let’s go straight to the results.

Mongo Replica Initializer (Go)
on my self-hosted Forgejo instance

https://forge.techtransthai.org/latenightdef/mongo-replica-initializer/

Simple Compose Runner

A simple CLI tool to run docker-compose at a specified location, without
having to change directories again and again.

● Run a compose in current directory ./main

● Run a compose in current directory, verbose output ./main -v

● Run at specified location ./main /path/to/repo

● Run at specified location, verbose output ./main -v /path/to/repo

Simple Compose Runner
on my self-hosted Forgejo instance

https://forge.techtransthai.org/latenightdef/simple-compose-runner

Kubernetes
03

From K3s to Helm charts

Why Kubernetes?

Kubernetes is a tool to help manage containerized workflows/apps (aka
Pods), distribute them between multiple nodes for high availability, load-
balance them and manage internal networks – so Pods can communicate
between each other, even if they’re on different machines!

So many Kubernetes out there...

● I started with K3s, installed Kubernetes Dashboard but the web console
didn’t want to connect to the cluster.

● I moved to K8s, this time the Dashboard works, but the control plane
dies when the host’s LAN IP gets changed (e.g. switching between
different Wi-Fi networks).

● I finally moved to minikube on my dev laptop. More on this later.

My experience with minikube (1/6)

Installation was simple, I just have to install a single RPM file (as a Fedora
user) and make sure Docker is installed – since I’ll be using the Docker
driver that will run the cluster in a Docker container.

When the cluster is ready, I installed the Dashboard and Ingress just by
running minikube addons enable dashboard and minikube addons enable
ingress

Both of them were installed successfully, time to deploy some apps!

My experience with minikube (2/6)

There are 2 ways to deploy apps that I’ve tried – Applying “deployment”
YAML files manually and using the Helm package manager.

I’ll be using Helm to install Invidious, a 3rd party ad-free YouTube frontend.

First, set up the repos.

And simply deploy it with

$ helm repo add invidious https://charts-helm.invidious.io
$ helm repo update

$ helm install invidious invidious/invidious

My experience with minikube (3/6)

Make sure the invidious service exists. It should be already set up by Helm.

Notice the port 3000/tcp on the service “invidious”. We’ll need this later.

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
invidious ClusterIP 10.98.234.39 <none> 3000/TCP 2d5h
invidious-postgresql ClusterIP 10.103.35.98 <none> 5432/TCP 2d5h
invidious-postgresql-hl ClusterIP None <none> 5432/TCP 2d5h
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 3d5h

My experience with minikube (4/6)

Now let’s expose it to the host via Ingress! Create an ingress.yml
containing these:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: invidious-ingress
spec:
 rules:
 - http:
 paths:
 - pathType: Prefix
 path: /
 backend:
 service:
 name: invidious
 port:
 number: 3000

My experience with minikube (5/6)

Make sure the information in correct, then apply the Ingress.

Give it some time to start. On my system it took about 30 seconds.

Now get the list of Ingresses on the system.

Open http://192.168.49.2 in your favorite browser.

$ kubectl apply -f ingress.yaml

$ kubectl get ingress
NAME CLASS HOSTS ADDRESS PORTS AGE
invidious-ingress nginx * 192.168.49.2 80 2d5h

Invidious on local Kubernetes cluster is now successfully
installed. Enjoy your videos! (6/6)

Honorable mentions
04

Supporting side projects

Honorable mentions

During my time at i-bitz company limited, there are many other interesting
things I’ve learned. Let’s go through the best ones briefly.

Website load testing/benchmarking

Running wrk at 8
threads, 200
connections for 10
seconds against my 2
websites. The top one
runs on AWS while the
bottom one runs on a
home/residential fiber
network.

Self-hosted Git Forge

I run a self-hosted Forgejo instance, so I can have complete control over all
of my repos and easily migrate the whole forge if anything goes south.

Forgejo is a fork of Gitea that went live when the Gitea project was taken
by the for-profit Gitea Ltd.

You can see my Forgejo instance in action at TechTransThai Forge

https://forge.techtransthai.org/

Self-hosted CI

I run a self-hosted Woodpecker CI, which is a fork of last free Drone CI
before the relicense from Apache 2.0 to a proprietary license. I’ve
attempted to use this with the Mongo Replica Initializer, but failed since the
Mongo Replica Initializer did not work in a DinD’ed environment.

You can check out my CI attempt for Mongo Replica Initializer here

https://ci.techtransthai.org/repos/1

Transactional email services (1/2)

I need a transactional email service for my Git Forge, especially when it
comes to Git-related notifications so I can check them out in my main
inbox.

This required an SMTP server.

I started out by trying to self-host a Postal instance on my EC2 server.
But I found out later that EC2 IPs are banned and blacklisted almost in all
spam filtering services, due to an unfortunate thing that spammers like to
buy instances and use it for spamming.

https://docs.postalserver.io/

Transactional email services (2/2)

Time to look for transactional email services.

I started with Amazon SES, but stuck in a sandbox and services are limited.

I checked out Postmark, but I need a company email to register on it.

I checked out MailerSend, but it only allow 100 emails as a trial.

I ended up using Amazon SES, since it’s just me and a few people I can
verify emails with anyway.

I went ahead to my Cloudflare DNS dashboard and added DKIM/DMARC
stuff to my domain. Now I have a working transactional email system.

Docker Hub alternatives

To not be tied into Docker’s ecosystem, I tried 2 other services.

Red Hat Quay.io – The workflow is quite different, since the server running
the registry is the build server by default, listening to webhooks from Git
repositories when pushed onto. You can also self-host Quay yourself too!

Forgejo container registry – This is where the power of self-hosted Forgejo
comes in! I can just docker login and push my images in a familiar way.

Documentation framework

My MkDocs site,
hosted in a custom-
bulit nginx Docker
container.
This will be used
for future projects’
docs.

A container-optimized OS for K8s (1/2)

I use Linux exclusively these days, from my little Raspberry Pi to headless
PCs running as home servers. Most of them are from the Red Hat family.

As I explored Kubernetes, something has caught my attention.

“Fedora CoreOS is an automatically updating, minimal, monolithic,
container-focused operating system, designed for clusters but also
operable standalone, optimized for Kubernetes but also great without it.
Its goal is to provide the best container host to run containerized
workloads securely and at scale.”

A container-optimized OS for K8s (2/2)

Container-focused systems aren’t anything new to me. In fact, I’ve been
using them on and off since about Fedora Silverblue 33-34 days. We’re
now at Fedora 40.

So I went ahead and booted up a new Fedora CoreOS virtual machine to
see how different it is to traditional server/cloud-oriented distributions.

The K3s installer downloads stuff from the internet and tried to use normal
Fedora’s YUM to install dependencies. It failed since YUM isn’t available for
these atomic systems.

However, upstream K8s was available in the official sources and can be
installed easily.

BONUS: Special events (1/2)

● On May 27, 2024, I was interviewed by the company’s marketing team. It
was about how I use social media platforms, search engines, deciding
factors for a software and trivial stuff.

● On June 5, 2024, I participated in the Vallaris training. This became an
inspiration for my computer engineering graduate project at KMITL.

BONUS: Special events (2/2)

● On June 18, 2024, I participated in the Youth Mapper event, along with
other interns and i-bitz staff at SWU. I had a presentation session about
my 3-year experience contributing to the OpenStreetMap project

● I talked about 5 of the tools I used,
from web apps to mobile ones.

● I talked about how can the OSM data
be used, such as navigation, a11y
and more.

Trivia

All serious things aside, I also learned new modes of transportation in
Bangkok! Including BMTA, private EV buses and the old good diesel
passenger trains!

Learning these new modes of transportation helped me save up to…

182 Baht/day

By replacing Airport Rail Link (plus parking fees) with SRT Eastern Line,
and replacing BTS Skytrain with classic BMTA buses.

From 210 Baht/day down to 28 Baht/day

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, infographics &

images by Freepik

Thanks
Do you have any questions?

I care about free software, decentralization, open data
and open standards.

Made with LibreOffice on Linux BTW!

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/

	Cover
	Table of Contents
	Chapter 01
	Python problem
	Python results overview
	MRI-Python repo
	Chapter 02
	Go problem
	Rewrite It In Go
	MRI-Go repo
	Simple Compose Runner
	SCR Repo
	Chapter 03
	Why Kubernetes?
	Kubernetes distributions
	minikube 1/6
	minikube 2/6
	minikube 3/6
	minikube 4/6
	minikube 5/6
	minikube 6/6
	Chapter 04
	Honorable mentions
	Web load testing
	Self-hosted Git Forge
	Self-hosted Git Forge Screenshots
	Self-hosted CI
	Self-hosted CI Screenshots
	Email 1/2
	Email 2/2
	Docker Hub alternatives
	Documentation
	OS for K8s 1/2
	OS for K8s 2/2
	Special Events 1/2
	Special Events 2/2
	Trivia
	Thanks

